Skip to main content

Section C.2 Math Typesetting

Pay attention to details

  • Points look like \(P\text{,}\) like other scalars.
  • Vectors look like \(\vec{V}\text{,}\) markup as <m>\vec{V}</m>.
  • Scalars and variables are italic, like \(A\text{,}\) or \(T\text{,}\) markup as <m>T<m>.
  • Latex subscripts: variables should be italic, labels upright. \(F_x\) vs. \(M_\text{cut}.\)
  • Vector subscripts should not be bold. \(\vec{F}_x\) not \(\vec{F_x}\text{.}\) markup as code <m>\vec{F}_x<m>
  • Use macros \ihat, \jhat, \khat for unit vectors.
  • Avoid \cdot for implied multiplication, it could be confused for dot product.
  • Put a space before differential quantities in integrals like so: y = \int x\; dx.
  • No parentheses around simple arguments of trig functions. Use \(\sin \alpha\text{,}\) not \(\sin (\alpha)\text{.}\) Use parentheses for ambiguous arguments \(\sin (2 \pi f t).\)
Notation.

Vector Notation

Table C.2.1. Vector Notation

Latex

Result

Notes

default \vec{}

\(\vec{F}\text{,}\) \(\vec{F}_x\text{,}\) \(\vec{i}\text{,}\) \(\vec{j}\text{,}\) \(\vec{\alpha}\text{,}\) \(\vec{\lambda}\)

Greek letters are not bold

\ihat, \jhat, \khat

\(\ihat\text{,}\) \(\jhat\text{,}\) \(\khat\)

Use these, not \vec{i} etc.

\vecarrow

\(\vecarrow{A}\)

\overrightarrow

\(\overrightarrow{A}\)

\hat

\(\hat{i}\text{,}\) \(\hat{j}\text{,}\) \(\hat{k}\)

\textbf

\(\textbf{F}\text{,}\) \(\textbf{$\alpha$}\)

\textbf{$\alpha$} doesn't work.

\mathbf

\(\mathbf{F}\text{,}\) \(\mathbf{\alpha}\text{,}\) \(\mathbf{i}\)

upright, but greek letters aren't bold.

\boldsymbol

\(\boldsymbol{F}\text{,}\) \(\boldsymbol{\alpha}\text{,}\) \(\boldsymbol{\lambda}\)

bold greek letters, but italic

\i \j (dotless)

\(\i,\)\(\j\)

doesn't work in MathJax

\imath, \jmath

\(\imath\text{,}\) \(\jmath\)

italic and dotless

Figure SS – This interactive allows you to input the vector components of \(\vec{F}_A\) and \(\vec{F}_B\) and then compute the magnitude of the projection of \(\vec{F}_A\) onto \(\vec{F}_B\)\(\left \| \proj_{\vec{F}_B}\vec{F}_A \right \|\text{,}\) the vector projection of \(\vec{F}_A\) onto \(\vec{F}_B\) (\(\proj_{\vec{F}_B}\vec{F}_A\)) and also the vector portion of \(\vec{F}_A\) which is perpendicular to \(\vec{F}_B\text{.}\) Source:

Unit vectors without dots? http://www.tapdancinggoats.com/latex-vector-notation.htm

What notation for vector components?

\(\vec{F} = (F_x, F_y, F_z)\) vs. \(\vec{F} = \langle F_x, F_y, F_z \rangle\text{,}\) \(\vec{F}=(20;\ang{30})\)

What notation for polar representation? I want to use angles < 90° from a reference.

Absolute values, scalar components, matrices, determinants

Single or double bars for absolute value?

\begin{gather*} \left | \proj_{\vec{F}_B}\vec{F}_A \right |\\ \left \| \proj_{\vec{F}_B}\vec{F}_A \right \| \end{gather*}

Notation for matrices and determinants? I believe determinants are in vmatrix, matrices in bmatrix or matrix

\begin{align*} \vec{M} \amp = \vec{r} \times \vec{F}\\ \amp = \det \begin{bmatrix} \ihat \amp \jhat \amp \khat \\ r_x \amp r_y \amp r_z \\ F_x \amp F_y \amp F_z \end{bmatrix} = \begin{vmatrix} \ihat \amp \jhat \amp \khat \\ r_x \amp r_y \amp r_z \\ F_x \amp F_y \amp F_z \end{vmatrix} \\ \amp = (r_y F_z- r_z F_y) \ihat - (r_x F_z - r_z F_x)\jhat - (r_x F_y - r_y F_x)\khat \end{align*}

What is the best notation for the projection operation?

\(\proj^{\vec{F}_A}_{\vec{F}_B}\text{,}\) or \(\proj_{\vec{F}_A/\vec{F}_B} \text{,}\) or

\(\proj_{\vec{F}_A,\vec{F}_B} \text{,}\) or \(\proj_{\vec{F}_A}(\vec{F}_B)\text{.}\)

Useful Macros.

I've defined some latex macros in docinfo.ptx so

\vec{A} will produce \(\vec{A}\)

\ihat will produce \(\ihat\)

\jhat will produce \(\jhat\)

\khat will produce \(\khat\)

\vecarrow{F} will produce \(\vecarrow{F}\)

\let\vecarrow\vec%
\renewcommand{\vec}{\boldsymbol}%
\newcommand{\ihat}{\mathbf {\boldsymbol{i}}}%
\newcommand{\jhat}{\mathbf {\boldsymbol{j}}}%
\newcommand{\khat}{\mathbf {\boldsymbol{k}}}%
\DeclareMathOperator{\proj}{proj}
Rotated measured angle.
\begin{align*} \vec{F} \amp = \N{100} @ \ang{30}~\measuredangle\\ \vec{F} \amp = \N{100} @ \ang{30}~\rotatebox[origin=c]{90}{$\measuredangle$}\\ \vec{F} \amp = \N{100} @ \ang{30}~\rotatebox[origin=c]{180}{$\measuredangle$}\\ \vec{F} \amp = \N{100} @ \ang{30}~\rotatebox[origin=c]{270}{$\measuredangle$} \end{align*}
\begin{gather*} \require{physics} \require{enclose} \enclose{circle}[mathcolor="blue"]{x}\\ \enclose{circle}[mathcolor="blue"]{\color{black}{x}}\\ \enclose{circle,box}{x}\\ \enclose{circle}{\enclose{box}{x}} \end{gather*}
\begin{gather*} \abs{A}\\ \norm{A} \end{gather*}
\begin{gather*} \require{HTML} \style{display: inline-block; transform: rotate(-90deg)}{\measuredangle}\\ \require{HTML} \style{display: inline-block; transform: rotate(90deg)}{\measuredangle} \end{gather*}

⦨ ⦩ ⦪ ⦫ ⦬ ⦭ ⦮ ⦯ ∡ ⦯